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Abstract

Recent U.S. Geological Survey (USGS) research focused on better understanding the physical processes that contributed to historical
wetland loss in coastal Louisiana and the spatial and temporal trends of that loss. The physical processes (land-surface subsidence and
sediment erosion) responsible for historical wetland loss were quantified by comparing marsh-surface elevations, water depths, and
vertical displacements of stratigraphic contacts that were correlated between short sediment cores at 10 delta-plain study areas and six
sites at Sabine National Wildlife Refuge (SNWR) in the western chenier plain. The sequential development and two-dimensional extent
of land loss at the study areas were described by comparing historical maps, aerial photographs, and satellite imagery. The total three-

- ; dimensional accommodation space that formed as the result of historical wetland loss was estimated by integrating the spatial data with

emergent-marsh elevations and bathymetry from the study areas.

losses since the 1990s were mostly associated with recent hurricanes.

hydrocarbon production in coastal Louisiana.

their pre-1956 areal extent and elevations.
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| Results of our stratigraphic analyses indicate that subsidence greatly exceeded erosion at most upper delta-plain wetland-loss sites,
whereas erosion was about equal to or slightly greater than subsidence at some lower delta-plain sites. Thick aggradational peat deposits
~ | were preserved at all delta-plain core sites. In contrast, erosion generally exceeded subsidence and the thinner chenier-plain peats were
mostly eroded at the SNWR wetland-loss sites. In the upper delta plain, rapid subsidence led to collapse of the emergent wetlands before gt
1978 and larger volumes of historically formed accommodation compared to the lower delta plain and chenier plain, where slower
subsidence led to greater marsh-sediment erosion and some wetlands did not become permanently submerged until after 1978. Wetland

Despite differences in geologic setting, similarities in temporal and spatial trends of wetland loss indicate that historical
accommodation formation was likely initiated by similar processes in both the delta and western chenier plains. The importance of land-
surface subsidence to initiating delta-plain wetland loss and accommodation formation is underscored by the fact that erosion is totally
contained within the peat section and does not penetrate the underlying clastic sediments, even at core sites where erosion exceeded
subsidence and extant water depths are greater than the emergent-peat thicknesses. At SNWR, initial subsidence likely lowered the
emergent marshes to a position where they were more susceptible to erosion. Analysis of tide-gauge and geodetic records indicate
that delta-plain subsidence rates accelerated between the mid 1960s and early 1990s before declining to rates that are comparable to
those averaged over geological time scales. The highest rates of subsidence and wetland loss partially correspond to the period of peak

We estimate that about 108 x 10° m® and 19 x 10° m? of accommodation formed locally on the delta and western chenier plains,
respectively, as the result of historical wetland losses between 1956 and 2004. The differences are attributed to greater subsidence in
the delta plain. These volumes provide a measure of the new sediment that would be needed at the study areas to restore the wetlands to
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